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Exercise 1. 1. Since f(0) = 0, the continuous function
f(z)
. — forall ze D\ {0
Fe =1 O

f(0)  for 2=0

is homomorphic on D (this follows simply by expanding f in Laurent series). By the maximum
principle, for all 0 < r < 1, we have

S| =

sup |f*(2)] = sup [f*(2)] <
z€D(0,r) |z|=r

as [f(2)| < 1. Let r — 1, we deduce that |f*(z)| < 1 for all z € D, which shows that |f(z)| < |2| for
all z € D. If equality holds, we deduce by the maximum principle that f* is a constant function,
which implies that f(z) = az for some a € S*.

2. Indeed, we have
|z —a?> = |1 —@z|> = |2|* = 2Re (@z) + |a]* — (1 — 2Re (az) + |a|*|2]?)
=lal(1 = |2*) + [2* = 1= (1 = |2 (la* = 1) <0
since |a| < 1. Furthermore, we easily show that fo, is its own inverse, which implies the result.

3. Consider f, ) o . Then, the Schwarz lemma implies that f,o) o ¢(z) = i~ for some 0 € [0, 27|,
and since fo ,(0) is its own inverse, we deduce that

‘ Wy £(0 oz —e PF0
F(2) = fop (€72) = 16_2]0((){;9)2 =< 12— eei‘)J;f((U))Z

and we can take a = e~ f(0) € .
Exercise 2. Let
2 o ) ou 2
@ s v (B)
V1+ Va2’ VI+ Va2’ V14 Va2

0 0 oh 0
An easy computation using the minimal surface equation shows that or e e Then,
oy oz or Oy

olz,y) = /OI /Oyg(s,t)dtds + /Om /Ot f(s,0)dsdt + /Oy /05 h(0,t)dtds

yields the solution.

the function

Exercise 3. 1. The regularity follows from the classical theorems of smooth dependence of integrals
with respect to a parameter. Integrating by parts and using the parity of ¢, we get for all ¢ € 2(Q)

/QA(%*U)wdx:/ﬂ%*qu:/ﬂw**Aﬂf
:/QuA(%*w)dx:O

where the final equality follows from the identity D(f *x g) = Df x g = f = (Dg) for all linear
differential operator D and smooth functions f and g (as long as the integrals converge).
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2. This is classical and omitted.

3. First, it is easy to establish that u also satisfies the mean value formula on spheres by differentiating
the identity. In other words, we have

1
pd)ra=t

Now, let ¢ € 2(]0, 1]) be a positive function such that

_ w d—1(,\ _ w d=1(,)
u(r) = ]émx,r) (y)dA" (y) /8 e (y)dA " (y)

' _
/Or w(r)dr—ﬁ(d).

Set . (z) = e %p(e71|x]). For all = € Q., the function y +— ¢.(x — y) has its support included in

+ B(0,¢e) C Q by definition of §2.. Therefore, we have by the mean-value formula

&)

1 _ 1
/B ey

ed

/Rd u(y)pe(z — y)dy = /Rd u(x —y)pe(y)dy =

—eR)pljzl)ar = 1 u(x —er Pt Ldrdpd—1
Jry =220z = [ [ st crapite i

1

s(@u(e) [ r ol = o)
0

which shows that u € C*°(€.). As the result is true for all ¢ > 0, the global regularity u € C>°(Q)

follows.

4. Since @, * u converges almost everywhere to u as € — 0, we deduce that u satisfies the mean value
formula. In particular, we have u € Lio (€2). Therefore, we get for all z,y € Q and 7 > 0 small
enough

|u(w)|dw

u(z)dz—/ u(t)dt| < 7/
¢ /B<m> B(y.r) a(d)r? J(B(erUB N (B@rNBY.M)

which shows the continuity of u since w is locally bounded.

\u(m) - u(y)‘ = a(d)r




